

20~65mA 單通道定電流 LED 驅動 IC

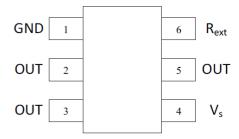
晶片特性

- led 驅動電流為 20mA
- 輸出電流可調高達 65mA 與外部電阻
- 電源電壓可達 40V
- 驅動器容易並聯以增加電流
- 低電壓開銷 1.4V
- 電源電壓變化時電流精度高
- 高功率耗散 400mW
- 在較高溫度下降低輸出電流-負熱係數-0.5%/ ℃

產品說明

NU402 是一簡單小功率的定電流元件,在各種 LED 照明產品的應用上非常容易使用。其具有絕佳的 負載與電源調變率和極小輸出電流誤差。NU402 系 列能使 LED 的電流穩定,在大面積的光源上,即使 電源及負載的變動範圍很大時,都能讓 LED 亮度保 持均勻一致,並增長 LED 使用壽命。

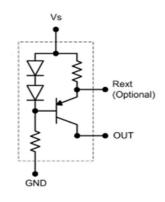
除了支援寬廣電源範圍外, NU402 配合數位 PWM 控制線路,可達到更精準的電流控制應用。


產品應用

- 一般 LED 照明
- LED 燈條應用
- LED 模組燈
- 建築裝飾照明

封裝型式

SOT 23-6


(產品型號: NU402)

腳位定義

腳位編號	腳位名稱	功能描述
1	GND	接地
2、3、5	OUT	恒流輸出
4	VS	電源輸入
6	REXT	電流設定電阻

結構方塊圖

FAX: +886-3-550-2805

晶片極限特性 (T = 25°C)

特性名稱	代表符號	規格	單位
電源電壓	V_s	-0.3~42	V
輸出端耐壓(Vs=40V)	$V_{Out_Disable}$	-0.3~38	V
輸出電流	$ m I_{out}$	65	mA
承受功率 (Ta=25°C)	PD	0.4	W
熱阻系數 (On PCB,	D	300	°C /W
Ta=25°C)	$R_{TH(j-a)}$	300	C / VV
工作溫度	T_{OPR}	-40 ~ +125	°C
儲存溫度	T_{STG}	-55 ~ +150	°C

一般電氣特性與建議使用條件

特性名稱	符號	測試條件	最 小	典型	最大	單位
發射極集電極擊穿 電壓電壓	V_s	$I_{c=1mA}$, $I_b = 0$	40			V
電源電流	${ m I_s}$	$V_{S=10V}$	34 0	44 0	540	uA
放大倍數	hFE	$I_{c} = 50\text{mA}$ $Vce=1V$ $Rext=00\text{hm}$		14 0	470	-
輸出電流	${ m I}_{{\sf OUT}}$	$V_s = 10V,Vout=8.6V$	18	20	22	mA
內部電阻	Rint	IRint=20mA	37	44	53	Ohm
電源調變率	Vdrop	Iout=Iout1	0.83	0.88	0.93	V
負載調變率	%/V	$V_s = 10 \sim 40V$, $V_s - Vout = 1.4V$,	-	ı	1	%/V
溫度調變率	%/°C	V _s = 10V, V _s -V _{OUT} = 1.4V, 溫度< 125°C	-	-	-0.5	%/°C
晶片間電流差異	${ m I}_{ m Skew}$	$V_{DD} = 3V, V_{OPT} = 1V$	-		5	%
建議操作功率	P _{D_recomd}	室溫	-	-	0.25	W

輸出電流設定

NU402 輸出電流可使用外掛電阻(Rext)設定.電流計算公式如下:

Iout(A)=0.9V/Rext+20mA

範例: I_{OUT} = 60mA

Rext= $0.9(0.06-0.02) = 22.5\Omega$

電壓、電流特性曲線

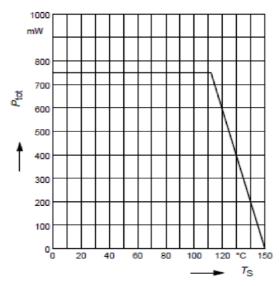


Fig.1 Permissible total power dissipation Ptot = $f(T_S)$

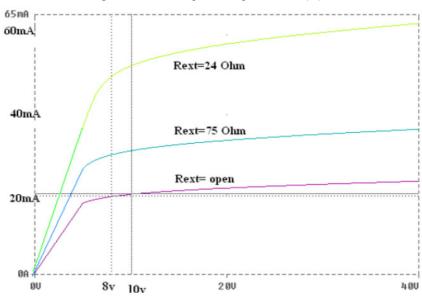


Fig. 2 Output current vs Supply voltage Vs-Vout=1.4V

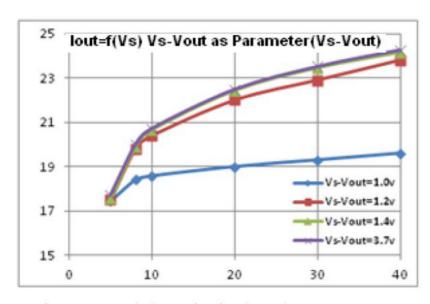


Fig. 3 Output Current(mA) vs Supply Voltage (V_S - V_{OUT}) as Parameter, Ta = 25°C

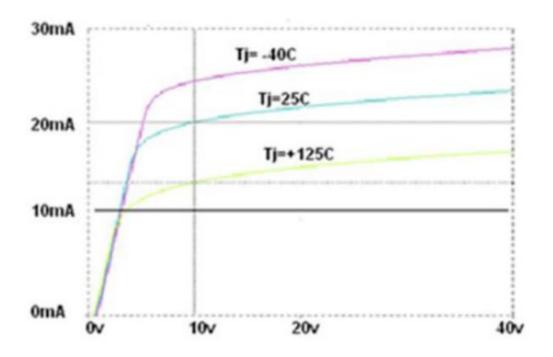
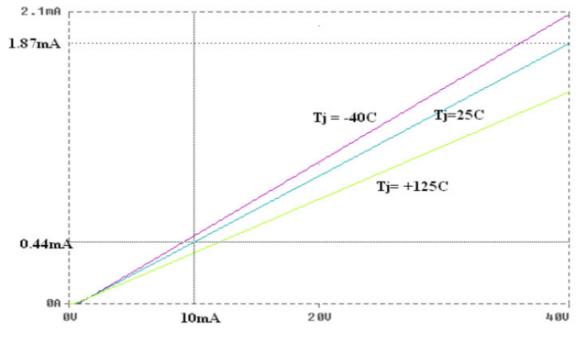
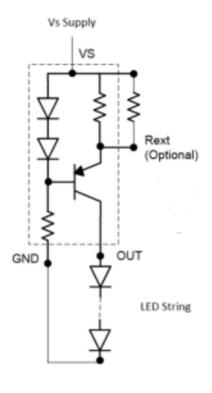
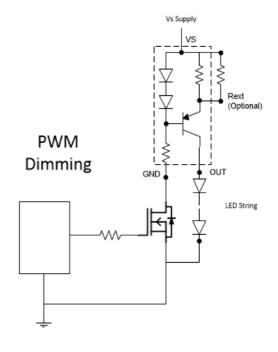
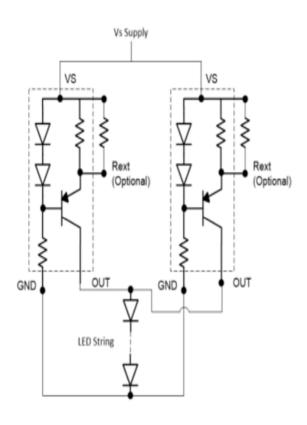


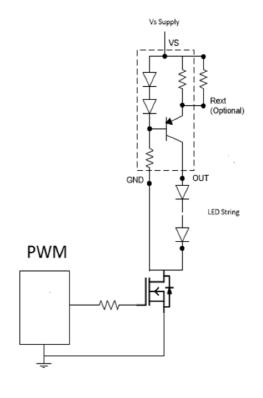
Fig. 4 Output Current vs Supply Voltage T_J as Parameter, (V_S-V_{OUT})=1.4V

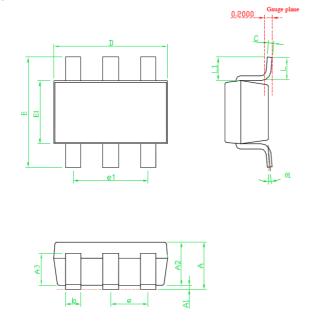

Fig. 5 Supply Current vs Supply Voltage

應用線路範例


● 一般照明應用


● PWM 調光應用

● 並聯應用



● DC power 調光應用

封裝尺寸圖

• SOT 23-6

SYMBOLS	DIMENSIONS IN MILLIMETERS			
STMBOLS	MIN	NOM	MAX	
A	1.00	1.10	1.40	
A1	0.00		0.10	
A2	1.00	1.10	1.30	
A3	0.70	0.80	0.90	
Ъ	0.35	0.40	0.50	
C	0.10	0.15	0.25	
D	2.70	2.90	3.10	
E1	1.40	1.60	1.80	
el		1.90(TYP)		
Е	2.60	2.80	3.00	
L	0.37			
θ1	1°	5°	9°	
e		0.95(TYP)		
L1	0.5	0.6	0.7	

產品應用的限制

- 數能科技保留未來更新產品規格的權利。
- 產品資訊的更新不另外特別通知。
- 數能科技將持續不斷對產品的品質和可靠度做精進。然而一般半導體元件由於電性敏感度及外力的衝擊也有失效的時後,因此對於系統設計者使用數能科技產品時,整體系統設計要能夠符合安規的要求,並確保產品應用能符合數能科技的產品規格範圍,以避免在人身安全及財物上造成損失。
- 本規格書所描述之數能科技產品,適用於如下所述的電子產品 (照明系統,顯示系統,個人手持裝置,辦公設備,檢測設備,機械手背,家電產品應用...等)。 在極端要求品質與高可靠度的人身安全產品或汽車引擎控制系統,飛機及交通工具控制系統,醫學儀器及所有安全性有關的產品 ,若由此產品的應用所產生的風險須由客戶自行承擔。